Robust Mouldable Scheduling Using Application Benchmarking for Elastic Environments
نویسندگان
چکیده
In this paper we present a framework for developing an intelligent job management and scheduling system that utilizes application specific benchmarks to mould jobs onto available resources. In an attempt to achieve the seemingly irreconcilable goals of maximum usage and minimum turnaround time this research aims to adapt an open-framework benchmarking scheme to supply information to a mouldable job scheduler. In a green IT obsessed world, hardware efficiency and usage of computer systems becomes essential. With an average computer rack consuming between 7 and 25 kW it is essential that resources be utilized in the most optimum way possible. Currently the batch schedulers employed to manage these multi-user multi-application environments are nothing more than match making and service level agreement (SLA) enforcing tools. These management systems rely on user prescribed parameters that can lead to over or under booking of compute resources. System administrators strive to get maximum “usage efficiency” from the systems by manual fine-tuning and restricting queues. Existing mouldable scheduling strategies utilize scalability characteristics, which are inherently 2-dimensional and cannot provide predictable scheduling information. In this paper we have considered existing benchmarking schemes and tools, schedulers and scheduling strategies, and elastic computational environments. We are proposing a novel job management system that will extract performance characteristics of an application, with an associated dataset and workload, to devise optimal resource allocations and scheduling decisions. As we move towards an era where on-demand computing becomes the fifth utility, the end product from this research will cope with elastic computational environments.
منابع مشابه
An intelligent robust mouldable scheduler for HPC & elastic environments
Traditional scheduling techniques are of a by-gone era and do not cater for the dynamism of new and emerging computing paradigms. Budget constraints now push researchers to migrate their workloads to public clouds or to buy into shared computing services as funding for large capital expenditures are few and far between. The sites still hosting large or shared computing infrastructure have to en...
متن کاملUsing Genetic Algorithm to Robust Multi Objective Optimization of Maintenance Scheduling Considering Engineering Insurance
Efficient and on-time maintenance plays a crucial role inreducing cost and increasing the market share of an industrial unit. Preventivemaintenance is a broad term that encompasses a set of activitiesaimed at improving the overall reliability and availability of a systembefore machinery breakdown. The previous studies have addressed thescheduling of preventive maintenance. These studies have co...
متن کاملRobust Fixed-order Gain-scheduling Autopilot Design using State-space Stability-Preserving Interpolation
In this paper, a robust autopilot is proposed using stable interpolation based on Youla parameterization. The most important condition of stable interpolation between local controllers is the preservation of stability so that each local controller can ensure stability for an open neighborhood around a nominal point. The proposed design used fixed-order robust controller with parameter-dependent...
متن کاملAn application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملCross-Layer Multi-Cloud Real-Time Application QoS Monitoring and Benchmarking As-a-Service Framework
Cloud computing provides on-demand access to affordable hardware (e.g., multi-core CPUs, GPUs, disks, and networking equipment) and software (e.g., databases, application servers and data processing frameworks) platforms with features such as elasticity, pay-per-use, low upfront investment and low time to market. This has led to the proliferation of business critical applications that leverage ...
متن کامل